ON THE ITERATION OF COINCIDENCE SUMMING CORRECTION FOR DETERMINATION OF GAMMA-RAY INTENSITIES

Yosuke SHIMA^a, Hiroaki HAYASHI^b, Yasuaki KOJIMA^c, Ryouta JYOUSYOU^a and Michihiro SHIBATA^c

^aDepartment of Materials, Physics and Energy Engineering, Nagoya University, Japan ^bInstitute of Biomedical Sciences, Tokushima University Graduate School, Japan ^cRadioisotope Research Center, Nagoya University, Japan

*E-mail: i45329a@nucc.cc.nagoya-u.ac.jp

Abstract In order to determine the γ-ray emission intensities of nuclei far from the β-stability line with HPGe detectors under large solid-angle geometry, coincidence summing corrections should be performed, even if full energy peak efficiencies of detectors are accurately measured with standard sources. Because the summing effects depend on decay scheme and emission intensities, the correction needs to be iterated several times starting from the initial values of intensities obtained directly from the measured peak counts of Y-rays. Considering ¹³⁴Cs, ¹⁵⁴Eu and ⁵⁶Co as typical examples, we discuss the number of iterations of summing correction required for self-consistency with respect to the total efficiencies of the detectors.

Experiments Objective Coincidence summing correction is needed for 22% HPGe detector : determination of reliable y-ray intensity of short-lived nuclei Solid angles : 0.6%, 10%, 20%, with acrylic β^- and β^+ absorber far from the *β*-stability line with HPGe detectors in close ϵ_p and ϵ_t : uncertainty: 2% and 5%, by measurements (¹⁰⁹Cd, ¹³⁷Cs, ⁵⁴Mn, ⁶⁰Co) geometry measurements. and GEANT4 β-branching ratios, log-ft values : calculate from the γ-ray Nuclides of interests: ¹³⁴Cs, ¹⁵⁴Eu, ⁵⁶Co ε_t(Ω=20%) intensity imbalance at each excited level. 10 ε₍Ω=10%) The summing correction should be iterated several times Acrylic cap 5.0 mm ε (Ω=20% according to the level structure. Efficiency 0. ε (Ω=10%) How many iterations of correction are required for reliable y-Source ε.(Ω=0.6%) ray intensities determination? 22% HPG Test nuclides Detector (Ω=0.6%) ¹³⁴Cs : simple decay scheme 10 Acrylic ^{154}Eu : more complicated decay scheme (wide energy Q = 20%Absorber 28 mm . range) = 10% ⁵⁶Co : β^+ emitter and high energy γ -rays above 3 MeV 153 n = 0.6% 10 10 Gamma-ray energy (keV) Analysis Correction of the coincidence summing using the pre-determined ϵ_p and ϵ_t by means of Shima *et al.* (2014) : Concept of summing correction by Monte-Carlo simulation

Randomly sampled the decay path from an excited level to the ground state in the decay scheme of each nucleus (ENSDF 2004) using Monte Carlo simulation. (The 10⁷ events were generated)

> The energy deposition events of no-coincidence or coincidence summing were randomly simulated.

 \triangleright iterate the procedure step by step by adopting the measured peak counts of each γ ray as the initial intensity I_{Via}

 $C_{\gamma_{\underline{i};0}}$ $=\frac{1}{\epsilon_{p\gamma_i}}$ $I_{\gamma_{i;0}}$ $C_{\gamma_{i;0}}$: the measured counts (no correction), $\ \varepsilon_{p_{\gamma_i}}$; peak efficiency for γ_i

The corrected $I'_{\gamma_{l;1}} = f_{\gamma_{l;0-1}} \times I_{\gamma_{l;0}}$. $f_{\gamma_{l;0-1}}$: correction factor derived from the above procedure. Renormalize the corrected $I'_{\gamma_{l;1}}$ (by the corrected $I_{\gamma_{604,7;1}}$ in ¹³⁴Cs, $I_{\gamma_{1274,7;1}}$ in ¹⁵⁴Eu, $I_{\gamma_{846,8;1}}$ in ⁵⁶Co).

The 2nd correction : deduce $f_{\gamma_{l;1} \rightarrow 2}$ using the renormalized $I_{\gamma_{l;1}}$.

- If the β -branching ratios became negative at some level, those were regarded as zero.
- Successively, the corrected intensities $I'_{\gamma_{i;j+1}} = f_{\gamma_{i;j \rightarrow j+1}} \times I_{\gamma_{i;0}}$ (j=1 to 10)

Conclusion

The correction for coincidence summing required several iterations. The number of iteration of coincidence summing depended on the decay scheme. At least 4 iterations were needed in case of the 20% solid-angle measurement in order to determine the intensities within 5% uncertainty. In practice, it is important to analyze y-ray spectra carefully and determine the peak counts as initial conditions reliably.

References

• Agostinelli, A. et al., Nucl. Instrum. and Meth. in Phys. Res. A503, 250-303. 2003. Debertin, K., Helmer, R. G., 1988. Elsevier Science Publishers, North-Holland, Amsterdam.

A₇X

 $\gamma_1(I_{\gamma_1}, \alpha_{T_1}, \alpha_{K_1})$

 γ_2

Z+1Y

- Evaluated Nuclear Structure Data File (ENSDF, NNDC) (Published: 2015 Nuclear Data Sheets.)
- Kawade, K. et al., Nucl. Instrum. and Meth. in Phys. Res. A301, 594-595. 1991.
- NUCLEIDE database (updated 20 December 2013), Recommended data by the Decay Data Evaluation Project, http://www.nucleide.org/DDEP_WG/DDEPdata.htm
 - Shima, Y. et al., Appl. Radiat. Isot. 91, 97-103. 2014.